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The reaction of 2-amidophenylmalonates with 1,4-diacetoxybut-2-ene in the presence of a palladium
catalyst is described. Substituted tetrahydroquinolines having a vinyl group at the 3- or 2-position were
synthesized, in which the regioselectivities of the double allylic substitution reactions have been altered
depending on the substituent on the amino group.
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Transition metal-catalyzed nucleophilic allylic substitution reac-
tions have received considerable attention and have been exten-
sively studied due to their versatile and specific reactivities.1

Among them, 2-butene-1,4-diol derivatives, such as the dicarbon-
ate, are attractive substrates for palladium-catalyzed reactions with
nucleophiles. For example, a compound having two nucleophilic
moieties within the molecule reacted with 1,4-diacyloxybut-2-
ene to afford the cyclized product via successive double allylic sub-
stitutions (Scheme 1). Various heterocyclic compounds such as
quinoxalines,2 benzoxazines,3 piperidines,4 morpholines,4,5 benzo-
dioxanes,6 oxazolidinones,7 pyrroles,8 and dihydrofurans9 have
been synthesized by this methodology. In our studies on the palla-
dium-catalyzed cascade cyclizations using compounds containing
two nucleophilic moieties,10 we focused on the nucleophilic activity
of 2-amidophenylmalonates toward the 1,4-diacyloxybut-2-ene. By
introducing nucleophilic nitrogen and carbon moieties within the
molecule, we thought that substituted tetrahydroquinolines, com-
mon structures in many biologically active compounds,11 could be
constructed in one step. Herein, we describe the palladium-cata-
lyzed reaction of 2-amidophenylmalonates 1 with 1,4-diacetoxy-
but-2-ene 2, in which the substituted tetrahydroquinolines 3 or 4
having a vinyl group at the 3- or 2-position have been regioselec-
tively constructed depending on the substituent on the amino group
(Scheme 2).

Our initial attempts were carried out using 2-(p-toluenesulfo-
nylamino)phenylmalonate (1a)12 and (Z)-1,4-diacetoxybut-2-ene
(2).13 When 1a and 2 were treated with 5 mol % Pd2(dba)3�CHCl3,
20 mol % DPPE and tBuOK in THF under reflux for 2 h, the 3-vinyl-
tetrahydroquinoline 3a was obtained in 27% yield (Table 1, entry
1). By changing the base (entries 2–4), the yield of 3a was
improved to 79% with K2CO3 (entry 4). After further experimenta-
010 Published by Elsevier Ltd. All r
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tion with various ligands (entries 5–8), we found that 3a could be
produced in 86% yield when DPPP was used as the ligand (entry 7).

We next attempted the reactions using the 2-amidophenylmal-
onates 1b–f having various electron-withdrawing groups on the
amino group (Table 2).14 When the sulfonamide-type substrates
1b and 1c having a benzenesulfonyl- and a 2-naphthalenesulfonyl
group were subjected to the reactions with 2, the 3-vinyltetrahy-
droquinolines 3b and 3c were produced in 89% and 55% yield,
respectively (entries 1 and 2). On the other hand, it is interesting
to note that the 2-vinyltetrahydroquinoline 4d was produced
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Table 2
Reactions using substrates 1b–f with 2
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5 mol % Pd2(dba)3·CHCl3
20 mol % ligand

K2CO3, THF, reflux, 2 h

1b–1f 2

3b–3d 4d–4f

Entry EWG Yields (%)

3 4

1a Benzenesulfonyl (1b) 89 —
2a 2-Naphthalenesulfonyl (1c) 55 —
3a Benzyloxycarbonyl (Cbz) (1d) 7 27
4b Benzyloxycarbonyl (Cbz) (1d) 14 74
5b Methoxycarbonyl (1e) – 66
6b t-Butoxycarbonyl (Boc) (1f) — 82

a DPPP was used as the ligand.
b (±)-BINAP was used as the ligand.
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predominantly when the benzyloxycarbonyl (Cbz)-substituted
substrate 1d was used (entry 3). Although the yield of the resulting
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4d was low (27%), it was dramatically improved to 74% by carrying
out the reaction in the presence of (±)-BINAP as the ligand (entry
4). Similar results were obtained in the reactions of other carba-
mate-type substrates. Thus, compounds 1e and 1f, containing a
methoxycarbonyl and a t-butoxycarbonyl (Boc) group, were regio-
selectively transformed to the corresponding 2-vinyltetrahydro-
quinolines 4e and 4f in 66% and 82% yield, respectively (entries 5
and 6). From these results, it is now clear that the regiochemical
course of the reaction is altered depending on the electron-with-
drawing group on the amine.

A plausible mechanism for the cyclization is shown in Scheme
3. On reacting with the palladium catalyst, 1,4-diacetoxybut-2-
ene 2 is converted to the p-allylpalladium complex 5, which is fur-
ther subjected to the reaction with the 2-amidophenylmalonate 1.
When the sulfonamide-type substrate was used, the corresponding
aza-anion 6 was selectively generated because of the strong elec-
tron-withdrawing character of the sulfonyl group.15 As a result,
the nucleophilic attack of the sulfonamide initially occurs to afford
the intermediate 7, which further reacts with the malonate moiety
in the presence of palladium to produce the 3-vinyltetrahydro-
quinolines 3 in a regioselective manner. On the other hand, the
malonate anion 8 would be predominantly produced in the case
of the carbamate-type substrate,15 which would lead to the forma-
tion of the 2-vinyltetrahydroquinolines 4 via the intermediate 9.16

We next carried out a study of the substrate scope. When the
tosylamides 1g and 1h, containing methyl and methoxy groups
on the aromatic ring, were subjected to the reactions with 2, the
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3-vinyltetrahydroquinolines 3g and 3h were produced in 86% and
92% yield, respectively (Scheme 4). Similarly, the reactions of the
carbamates 1i and 1j bearing methyl and methoxy groups on the
aromatic ring also proceeded to give the 2-vinyltetrahydroquino-
lines 4i and 4j in 71% and 85% yield, respectively. When (E)-1,4-
diacetoxybut-2-ene (10) was reacted with the tosylamide 1a and
the t-butoxy carbamate 1f, the corresponding products 3a and 4f
were obtained in 81% and 57% yield, respectively (Scheme 5). This
implies that the reactions occurred via the common p-allylpalla-
dium intermediate 5 regardless of the stereochemistry of the sub-
strate 2.

In summary, the studies described above have resulted in the
regioselective synthesis of vinyltetrahydroquinolines by a palla-
dium-catalyzed cyclization between the 2-amidophenylmalonates
and 1,4-diacetoxybut-2-ene. The regioselectivity of the reaction
can be altered depending on the substituent on the amino group.
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